
California
Institute of
Technology

Adapting ODC for Empirical
Evaluation of Pre-Launch Anomalies

Dr. Robyn Lutz and Carmen Mikulski

OSMA Software Assurance Symposium
July 29-August 1, 2003

SAS’03 2

California
Institute of
TechnologyTopics

• Overview
• Results

– Mars Exploration Rover
– Deep Impact
– Infusion of method
– Dissemination of results

• Examples: Patterns and Lessons Learned
• Benefits

SAS’03 3

California
Institute of
Technology

Overview
• Goal:

1. To characterize pre-launch software anomalies, using data
from multiple spacecraft projects, by means of a defect-
analysis technology called Orthogonal Defect Classification
(ODC).

2. To support transfer of ODC to NASA projects through
applications and demonstrations.

• Approach:
1. Analyze anomaly data using adaptation of Orthogonal

Defect Classification (ODC) method

2. Adapt ODC for NASA use and apply to NASA projects

SAS’03 4

California
Institute of
Technology

Overview: Status
• Previous work used ODC to analyze safety-

critical post-launch software anomalies on 7
spacecraft.

• FY’03 task extends ODC work to pre-launch
development and testing (Mars Exploration Rover
testing, Deep Impact, contractor-developed
software) and to support technology infusion

• Adapted ODC categories to spacecraft software
at JPL:
– Activity: what was taking place when anomaly

occurred?
– Trigger: what was the catalyst?
– Target: what was fixed?
– Type: what kind of fix was done?

SAS’03 5

California
Institute of
Technology

Results: MER
• Collaborating with Mars Exploration Rover to experimentally

extend ODC approach to pre-launch software problem/failure
testing reports (525 to date)
– Adjusted ODC classifications to testing phases
– Institutional defect database Access database of data of

interest Excel spreadsheet with ODC categories Pivot
tables with multiple views of data

– Frequency counts of Activity, Trigger, Target, Type, Trigger
within Activity, Type within Target, etc.

– User-selectable representation of results support tracking
trends and progress:

– Graphical summaries
– Comparisons of testing phases

– Provides rapid quantification of data
– Project provides feedback/queries on our monthly

deliverables of results and on our draft reports/paper

SAS’03 6

California
Institute of
TechnologyResults: Deep Impact

• Collaborating with Deep Impact to extend ODC approach
into software developmental anomaly reports via ODC
classification of development-phase SCRs (Software
Change Reports) at Ball

– Classified initial set of 94 critical DI SCRs (with highest
cause-corrective action/failure effect ratings)

– Feasibility check: ODC classification of development-
stage software defects works well

– Initial delivery to DI of ODC pivot table results (for
browsing), of user instructions, and of initial
issues/concerns

– Project uses telecons/email to answer questions,
suggest paths of interest to project

SAS’03 7

California
Institute of
TechnologyResults: Infusion

• Gave invited presentation on ODC to JPL’s
Software Quality Initiative task as candidate
defect-analysis tool

• Worked with manager/developers of next-
generation JPL problem-reporting system to
ensure that their web-based database will support
projects’ choice of ODC

• Carmen presented ODC to JPL’s DII project
(Defense Information Infrastructure); they
requested followup presentation (given); Carmen
is working with DII as they train their users &
transition ODC into their operations

• Wide distribution to projects of slide summarizing
use of ODC on MER (T. Menzies suggestion)

Testing
Problem
Reports

Problem
Report
file
for MER

MER use:
Browse pivot
chart (Excel) for
overview/closer
look at testingClassify MER

test problem
reports per ODC
Categories

Discover defect
patterns in
testing of
interest to MER

MER use:
Identify patterns
of concern for
more investigation

Perform Root
Cause Analysis
on subset

• Develop and
package
recommendations
for MER

MER use:
Improved
understanding of
data, underlying
causes, defect
mechanisms

MER use:
Implement/defer
recommendations

Use on MER of ODC*
defect analysis
Use on MER of ODC*
defect analysis

New-S/W fix
New-

Procedure Confusion-
Doc Confusion-

None

Ops

Test

Total

46

10

8

26

35

3 5

22

11

7

3 40

5

10

15

20

25

30

35

40

45

50

Requirements Classification

N
u

m
b

er

Recommendations for MER and
future projects:

Earlier assignment of criticality
ratings

If software’s behavior
confused testers, enhance
documentation

Earlier testing of fault-
protection

How many problem reports result
in requirements discovery?

Improvement release-by-release
uneven: why?

Many closed with no fix: why?

Where are the spikes?
Phase-by-phase deltas?
Activity/Trigger/Target/

Type look nominal?

*ODC = Orthogonal Defect
Classification technique [IBM]

SAS’03 9

California
Institute of
TechnologyResults: Dissemination

• Presented paper on the 4 mechanisms involved in
requirements discovery during testing at ICSE 2003 (Int’l
Conf on S/W Eng)

• Presented paper on patterns of defect data at SMC-IT 2003
(Space Mission Challenges)

• Presented results at JPL/GSFC QMSW 2003 (Quality
Mission Software Workshop)

• T. Menzies presented analysis of the ODC defect data at
SEKE 2003 (Int’l Conf S/W Eng & Knowledge Eng)

• Paper on how operational anomalies drive requirements
evolution appeared in Journal of Systems and Software,
Feb. 2003

• Paper describing similar mechanisms in testing & ops
anomalies accepted to RE 2003 (Int’l Requirements Eng
Conf); selected as one of best experience papers & paper
invited for IEEE Software submission

SAS’03 10

California
Institute of
TechnologyExample: Testing Defect Patterns

A
ss

ig
nm

en
t/I

ni
tia

liz
at

io
n

D
oc

um
en

ta
tio

n

F
un

ct
io

n/
A

lg
or

ith
m

H
ar

dw
ar

e

In
te

rf
ac

es

M
is

si
ng

 P
ro

ce
du

re
s

N
ot

hi
ng

 F
ix

ed

P
ro

ce
du

re
s

no
t f

ol
lo

w
ed

T
im

in
g

S
til

l o
pe

n

U
nk

no
w

n

F
lig

ht
 R

ul
e

Flight Software
Hardware

Information Development
None/Unknown

0

10

20

30

40

50

60

70

80

90

100

Distribution of Types by Target

SAS’03 11

California
Institute of
TechnologyExample: Lessons Learned from

ODC
• Testing reports give “crystal ball” into operations

– False-positive testing problem reports (where software
behavior is correct but unexpected) provide insights into
requirements confusions on the part of users

– If software behavior surprised testers, it may surprise
operators

• Closing problem reports with “No-Fix-Needed”
decision can waste opportunity to document /train/
change procedure
– Avoid potentially hazardous recurrence
– Important in long-lived systems with turnover, loss of

knowledge

SAS’03 12

California
Institute of
Technology

Benefits
• Experience: Applied to 9 NASA projects

– Development, testing, and operations phases
• Level of effort affordable

– Uses existing fields in existing problem-reporting system)
– ODC ~ 4 minutes/defect vs. Root cause ~ 19 (Leszak & Perry

2003)
• Uses metrics information to identify and focus on problem

patterns
– Incorporates project results into multi-project baseline

patterns to provide guidance to future projects
– Can answer current project’s questions regarding defects

• Flexible
– Visualization & browsing options

• Provides quantitative foundation for process improvement
• Equips us with a methodology to continue to learn as projects

and processes evolve

SAS’03 13

California
Institute of
TechnologyBackup Slides

SAS’03 14

California
Institute of
Technology

Results
• 2 basic kinds of requirements discovery:

– Discovery of new (previously unrecognized)
requirements or requirements knowledge

– Discovery of misunderstandings of (existing)
requirements

• Reflected in ODC Target (what gets fixed) and
ODC Type (nature of the fix):
1. Software change (new requirement allocated to

software)
2. Procedural change (new requirement allocated

to operational procedure)
3. Document change (requirements confusion

addressed via improved documentation)
4. No change needed

SAS’03 15

California
Institute of
TechnologyResults: Examples

1. Incomplete requirements, resolved by change to
software:

New software requirement became evident:
initial state of a component’s state machine
must wait for the associated motor’s initial
move to complete

2. Unexpected requirements interaction, resolved
by changes to operational procedures:

Software fault monitor issued redundant off
commands from a particular state (correct but
undesirable behavior). Corrective action was
to prevent redundant commands procedurally
by selecting limits that avoid that state in
operations

SAS’03 16

California
Institute of
TechnologyResults: Examples

3. Requirements confusion, resolved by changes to
documentation

Testing personnel incorrectly thought heaters
would stay on as software transitioned from
pre-separation to Entry/Descent mode; clarified
in documentation.

4. Requirements confusion, resolved without change
Testers assumed commands issued when
component was off would be rejected, but
commands executed upon reboot. No fix
needed; behavior correct.

